Bruker

+1 (800) 715-8440

Bruker AFM Probes Announcements » AFM New Product Announcements

Bruker Introduces Dimension FastScan Pro Industrial AFM

Providing Nanometer-Resolution at High Scan Rates for up to 300-mm Samples

 

Santa Barbara, California – April 25, 2016 – Bruker today announced the release of the Dimension FastScan Pro™ Automated AFM Nano-Metrology System for high-volume measurement environments. FastScan Pro renders performance previously achievable only by AFM experts in research laboratories while delivering the repeatability and reproducibility expected in a production environment. The system integrates Bruker’s proven lowest noise and fast scanning technology to provide the highest throughput without reducing data quality. FastScan Pro also utilizes a highly comprehensive software automation package that features intuitive recipe-writing capabilities to reduce complex measurement routines to simple, push-button operations. This unique industrial AFM solution is completed with Bruker FastScan probes specifically designed to deliver longer tip life and sustained high-resolution data acquisition across hundreds of samples in high-volume environments. With its open access platform, large- or multiple-sample holders, and numerous ease-of-use features, FastScan Pro opens up the power of high-performance, research-grade atomic force microscopy to meet production requirements.

“Bruker has put considerable resources behind moving our unique, highly sophisticated research technologies into production applications,” said Marco Tortonese, Ph.D., Vice President and General Manager of Bruker’s AFM Instrumentation Business. “The FastScan Pro system’s industry-leading ease-of-use, highest resolution performance, greater than ten times measurement throughput increase, and capability to produce over five-hundred data images from a single probe should change the landscape of nanoscale quality control in manufacturing.”

About Dimension FastScan Pro

FastScan Pro incorporates both FastScan and Icon AFM scanners and Bruker-exclusive PeakForce Tapping® technology to perform accurate depth measurements from sub-nanometer steps to high-aspect ratio trenches with high accuracy. Robust software and an intuitive user interface support automated laser and detector alignment. Included is a built-in user-accessible cantilever database for system auto-settings, safe fast-engage control, and easy sample navigation. The system also features new AutoMET software, which delivers fast, automated metrology, exceptional ease-of-use, and AFM adaptability to capture critical-to-quality measurements needed in QA/QC, FA and production.

Media Contact: 
Stephen Hopkins
Marketing Communications
Bruker Nano Surfaces Division
T: +1 (520) 741-1044 x1022
E: steve.hopkins@bruker.com

Bruker Introduces Scanning Microwave Impedance Microscopy for Dimension Icon AFMs

PeakForce sMIM Mode Provides Enhanced Nanoscale Mapping of Permittivity and Conductivity

 

SANTA BARBARA, California – May 17, 2016 – Bruker’s Nano Surfaces Division today announced the release of scanning microwave impedance microscopy (sMIM) capability for its Dimension Icon® atomic force microscope (AFM) platform. The innovative sMIM technique works by reflecting a microwave signal from a nano-probe and sample interface to reveal the electrodynamic properties of the sample surface and sub-surface. The detection and processing of microwave reflectance is done in real time, allowing direct access to the permittivity and conductivity of materials. When integrated with Bruker’s unique PeakForce Tapping®, sMIM greatly expands its applications to simultaneous characterization of electrical and mechanical properties. In addition, Bruker’s new PeakForce sMIM mode enables characterization of previously challenging measurements on fragile samples, such as nanotubes, nanowires, biological samples and is ideal for electrical characterization of 2D materials.

“We greatly expanded the nano-electrical characterization capabilities for researchers in the semiconductor industries by bringing Bruker’s exclusive PeakForce Tapping to the exciting sMIM technology developed by PrimeNano Inc.” said Marco Tortonese, Ph.D., Vice President and General Manager of Bruker’s AFM Instrumentation Business. “Researchers can now benefit from the most sensitive and complete permittivity and conductivity data on even the most delicate of materials, all at the nanoscale.”

“Our sMIM technique is already changing the way nanoelectric research is being done, and we are gratified that the electronics and proprietary probes we have developed are benefitting the entire AFM community,” added Dr. Stuart Friedman, CEO of PrimeNano, Inc. “PrimeNano’s enabling sMIM technology being utilized with Bruker’s well-known Icon system, particularly in conjunction with their PeakForce Tapping mode, is another huge step in this endeavor.”

About PeakForce sMIM
The AFM-based sMIM technique accesses the reflected microwave signal from the tip-sample interface to reveal electrodynamic property data of the sample surface underneath the tip. Since it is based on the capacitive coupling between the tip and the sample, sMIM does not require making electrical contact between the sample and the substrate. This frees researchers and engineers from the tedious work of wiring and soldering that might alter the sample electrical properties and be impossible for nanoscale materials. As a near-field method, the resolution of sMIM is only limited by the tip radius of the probe, and it can easily achieve a lateral resolution of <20 nm for electrical mapping. Sub-aF sensitivity and high S/N ratios are realized by using waveguide tips with coaxial shielding. Having these unique capabilities, sMIM is superior to other AFM-based electrical modes for a broad range of applications. The versatility of PeakForce sMIM leveraging Dimension Icon and PeakForce Tapping will empower material researchers and device engineers to explore basic principles underlying functionality and perform more advanced and complete materials characterization and device failure analysis.

Media Contact: 
Stephen Hopkins,
Marketing Communications
Bruker Nano Surfaces Division
T: +1 (520) 741-1044 x1022
E: steve.hopkins@bruker.com

Bruker Introduces Complete Commercial AFM-Based SECM Solution

SANTA BARBARA, CA – September 20, 2016 – Bruker’s Nano Surfaces Division today announced the release of scanning electrochemical microscopy (SECM) capability for its Dimension Icon® atomic force microscope (AFM) platform. Utilizing a proprietary probe design, Bruker’s new PeakForce SECM™ mode controls nanoelectrode tip position and tip-sample interaction with unprecedented precision to provide simultaneous capture of topographical, electrochemical, electrical, and mechanical maps. This capability provides access to previously unobtainable nanoscale observation of redox reactions and their kinetics. Now researchers are able to address vital evolution of materials for energy, environment, and biochemical sensors.

“Our customers have been consistently imaging at very high resolution with the new nanoelectrodes on the Dimension Icon AFM,” said Teddy Huang, Ph.D., Senior Applications Scientist at Bruker Nano Surfaces Division. “For the first time they are able to capture electrochemistry correlated with nanomechanical information to understand the complex relationship between size, geometry, modulus, adhesion, and activity of nanostructured materials.”

PeakForce SECM radically redefines what is possible in the nanoscale visualization of electrical and chemical processes in liquid,” added Marco Tortonese, Ph.D., Vice President and General Manager of Bruker’s AFM Instrumentation Business. “This breakthrough is the result of the continuing evolution of PeakForce Tapping® technology combined with our in-house design and manufacture of reliable commercial probes.”

About PeakForce SECM

PeakForce SECM takes full advantage of Bruker’s exclusive PeakForce Tapping to deliver a new approach to SECM that extends its capability to nanoscale electrochemistry, electrical and mechanical mapping of a wide variety of samples, from soft biological systems to polymers. Bruker’s PeakForce SECM probes are batch-fabricated using proprietary methods to consistently produce a high-quality nanoelectrode. An optimized conductive path and special coating techniques eliminate pinholes, resulting in negligible leakage and capacitive currents. PeakForce SECM improves resolving power over traditional approaches by orders of magnitude, and opens the door to electrochemical measurements on individual nanoparticles, nanophases, and nanopores.

About Bruker Corporation

For more than 50 years, Bruker has enabled scientists to make breakthrough discoveries and develop new applications that improve the quality of human life. Bruker’s high-performance, scientific research instruments and high-value analytical solutions enable scientists to explore life and materials at molecular, cellular and microscopic levels.

In close cooperation with our customers, Bruker is enabling innovation, productivity and customer success in life science molecular research, in applied and pharma applications, in microscopy, nano-analysis and industrial applications, as well as in cell biology, preclinical imaging, clinical research, microbiology and molecular diagnostics.

Media Contact:

Media Contact: 
Stephen Hopkins
Marketing Communications
Bruker Nano Surfaces Division
T: +1 (520) 741-1044 x1022
E: steve.hopkins@bruker.com

Bruker Bio AFM Enables Advanced DNA Research at University of Leeds

Dimension FastScan Bio Provides Advantages over Conventional AFMs

 

SANTA BARBARA, California – November 1, 2016 – Bruker’s Nano Surfaces Division reports on the groundbreaking use of a Dimension FastScan Bio™ AFM system at the University of Leeds, UK, to investigate biological and biomolecular systems at the highest resolution. Neil Thomson’s group, associated with the University’s Astbury Centre for Structural Molecular Biology, has utilized the system’s high-speed scanning, exceptional force control and high-resolution performance to characterize DNA systems, such as DNA-protein interactions and DNA origami structures, in ways that were not previously possible with other instrumentation. Furthermore, Simon Connell’s team in the School of Physics and Astronomy, where the instrument is based, has characterized the temperature-dependent dynamic behavior of critical biomimetic lipid membranes.

“The FastScan Bio AFM has improved performance over conventional AFMs, as we have achieved resolution close to the helical repeat of the DNA strands that make up the origami nanotiles,” explained Professor Neil Thomson. “The smaller FastScan probes and high stability of this AFM platform are key to obtaining high-resolution imaging under liquid. This improved resolution is helping us answer questions about the formation and stability of DNA origami for future nanomaterials applications.”

“The higher speed and stability of the FastScan Bio gives us the first direct insight into membrane nano-domain dynamics,” added Dr. Simon Connell. “The movies we capture of motion in model cell membranes under increasing temperature let us quantify domain line tensions and observe the breakdown of large lipid domains into much smaller nanoscale fluctuations. We can now directly correlate domain lifetime with size at and above the critical temperature.”

“Bruker has spent considerable effort to bring the performance and speed benefits of our FastScan platform to life science applications,” explained Marco Tortonese, Ph.D., Vice President and General Manager of Bruker’s AFM Instrumentation Business. “The FastScan Bio’s combination of resolution and productivity enables more groups like those at the University of Leeds to observe biological functions at AFM spatial resolution, ultimately increasing the pace of biological discovery.”

About Dimension FastScan Bio

The Dimension FastScan Bio system utilizes a revolutionary XYZ scanner designed to operate at high-speed rates while delivering extremely low drift and low noise. Together with its large XYZ scan range, this enables high-resolution and high-speed imaging of both molecular and cellular dynamic processes. The system’s innovative user interface, including automated laser and detector alignment, feature-tracking capabilities with NanoTrackTM, and real-time data analysis with MovieMakerTM, not only reduces the complexity of the experimental setup, it also dramatically increases the success to acquiring biologically impactful data. Other accessories include a micro-volume flow cell for controlled fluid exchange, as well as a sample stage heater for conducting studies at physiologically relevant temperatures. With the FastScan Bio, productive temporal, high-resolution nanometer-scale research is a reality for every bio researcher.

Media Contact:

Media Contact: 
Stephen Hopkins
Marketing Communications
Bruker Nano Surfaces Division
T: +1 (520) 741-1044 x1022
E: steve.hopkins@bruker.com